Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(4*R*,5*R*)-4,5-Bis{2-[3-(2,6-diisopropylphenyl)-2-thioxoimidazolidin-3-yl]ethyl}-2,2-dimethyl-1,3-dioxolane

Colin Marshall and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland Correspondence e-mail: w.harrison@abdn.ac.uk

Received 11 October 2007; accepted 13 October 2007

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.004 Å; R factor = 0.058; wR factor = 0.110; data-to-parameter ratio = 21.0.

In the chiral title compound, $C_{39}H_{58}N_4O_2S_2$, the complete molecule is generated by crystallographic twofold symmetry, with one C atom lying on the rotation axis. The packing is established by van der Waals forces.

Related literature

For background, see: Marshall & Harrison (2007); Williamson *et al.* (2006). For reference structural data, see: Allen *et al.* (1987).

Experimental

Crystal data $C_{39}H_{58}N_4O_2S_2$ $M_r = 679.02$

Orthorhombic, $P2_12_12_1a = 13.5581$ (7) Å

b = 19.3022 (9) Å c = 7.7028 (3) Å $V = 2015.83 (16) \text{ Å}^3$ Z = 2

Data collection

Enraf–Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\rm min} = 0.936, T_{\rm max} = 0.995$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.058 \\ wR(F^2) &= 0.110 \\ S &= 0.93 \\ 4595 \text{ reflections} \\ 219 \text{ parameters} \\ \text{H-atom parameters constrained} \end{split}$$

organic compounds

Mo K α radiation $\mu = 0.17 \text{ mm}^{-1}$ T = 120 (2) K $0.40 \times 0.04 \times 0.04 \text{ mm}$

16730 measured reflections 4595 independent reflections 2574 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.171$

 $\begin{array}{l} \Delta \rho_{max} = 0.25 \mbox{ e } \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.25 \mbox{ e } \mathring{A}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ \mbox{ with 1958 Friedel pairs} \\ \mbox{ Flack parameter: } -0.04 \mbox{ (9)} \end{array}$

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK*, *DENZO* (Otwinowski & Minor, 1997) and *SORTAV* (Blessing, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors thank the EPSRC UK National Crystallography Service (University of Southampton) for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LW2040).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Marshall, C. & Harrison, W. T. A. (2007). Acta Cryst. E63. Submitted.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.
- Williamson, C., Storey, J. M. D. & Harrison, W. T. A. (2006). J. Chem. Crystallogr. 36, 277–282.

supplementary materials

Acta Cryst. (2007). E63, o4503 [doi:10.1107/81600536807050349]

$(4R,5R)-4,5-Bis\{2-[3-(2,6-diisopropylphenyl)-2-thioxoimidazolidin-3-yl]ethyl\}-2,2-dimethyl-1,3-dioxolane$

C. Marshall and W. T. A. Harrison

Comment

As part of our ongoing investigations of chiral, C_2 -symmetric catalysts (Marshall & Harrison, 2007), the title compound, (I), $C_{39}H_{58}N_4O_2S_2$, an intermediate in such materials, has been synthesized and structurally characterized.

The complete molecule of (I) is generated by crystallographic 2-fold symmetry, with C2 lying on the rotation axis (Fig. 1). Thus, of course, both C3 and C3ⁱ (i = 1=x, 1 – y, z) must show the same chiralities, where are the expected R configurations. The dihedral angle between the C9–C14 and C9ⁱ–C14ⁱ rings is 67.10 (7)°

The C—N and (nominal) C=S bonds in the 5-membered rings display typical geometrical parameters, which can be correlated with the contribution of resonance structures involving the lone pair electrons of the adjacent N atoms (Williamson *et al.*, 2006). Otherwise, the geometries of the two molecules may be regarded as normal (Allen *et al.*, 1995).

The crystal packing for (I) is established only by van der Waals forces.

Experimental

A mixture of (4R,5R)-4,5-bis[1-(2,6-diisopropylphenyl)-imidazolidinium-3-ethyl]-2,2- dimethyl-1,3-dioxolane dibromide (0.75 g, 0.963 mmol), sulfur (0.09 g, 2.89 mmol), methanol (10 *cm*3), pyridine (1.5 *cm*3) and 1,8-diazabicyclo[5.4.0]undec-7-ene (0.65 g, 4.29 mmol) was heated at 338 K for 18 h. Once cooled to room temperature the mixture was opened to water (40 ml) and extracted with chloroform (3 × 20 ml). The combined extracts were dried over magnesium sulfate, filtered and concentrated under reduced pressure to leave a brown residue. The crude product was purified by column chromatography (SiO₂, ethyl acetate:petroleum ether v/v 1:1, loaded as a dichloromethane solution) to give the title compound (0.48 g, 73%) as a colourless solid. Colourless rods and needles of (I) were recrystallized from diethyl ether/acetone (v/v 1:1). *M*.p 351 K.

Refinement

The H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Figures

Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids. All the H atoms except H3 (represented as arbitrary spheres) are omitted for clarity. Symmetry code: (i) 1 - x, 1 - y, z.

(4R,5R)-4,5-Bis{2-[3-(2,6-diisopropylphenyl)-2- thioxoimidazolidin-3-yl]ethyl}-2,2-dimethyl-1,3-dioxolane

Crystal data	
$C_{39}H_{58}N_4O_2S_2$	$F_{000} = 736$
$M_r = 679.02$	$D_{\rm x} = 1.119 {\rm Mg m}^{-3}$
Orthorhombic, $P2_12_12$	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: P 2 2ab	Cell parameters from 9370 reflections
a = 13.5581 (7) Å	$\theta = 2.9 - 27.5^{\circ}$
b = 19.3022 (9) Å	$\mu = 0.17 \text{ mm}^{-1}$
c = 7.7028 (3) Å	T = 120 (2) K
$V = 2015.83 (16) \text{ Å}^3$	Rod, colourless
<i>Z</i> = 2	$0.40 \times 0.04 \times 0.04 \text{ mm}$

Data collection

Enraf–Nonius KappaCCD diffractometer	4595 independent reflections
Radiation source: fine-focus sealed tube	2574 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.171$
T = 120(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SORTAV; Blessing, 1995)	$h = -17 \rightarrow 17$
$T_{\min} = 0.936, T_{\max} = 0.995$	$k = -25 \rightarrow 22$
16730 measured reflections	$l = -9 \rightarrow 9$

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.0178P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.058$	$(\Delta/\sigma)_{\rm max} = 0.001$
$wR(F^2) = 0.110$	$\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 0.93	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
4595 reflections	Extinction correction: SHELXL97 (Sheldrick, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
219 parameters	Extinction coefficient: 0.0070 (11)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), with 1958 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: -0.04 (9)
Hydrogen site location: inferred from neighbouring sites	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y C1 0.5915 (2) 0.0320 (8) 0.50945 (16) 1.2187 (4) H1A 0.5822 0.5486 1.2982 0.048* H1B 0.6480 0.5187 1.1426 0.048* H1C 0.6040 0.4672 1.2859 0.048* C2 0.5000 0.5000 1.1103 (5) 0.0296 (11) C3 0.4899(2)0.46133 (13) 0.8247(3)0.0253(7)H3 0.4184 0.4523 0.8028 0.030* C4 0.5526(2) 0.41930 (13) 0.7009 (4) 0.0268 (7) H4A 0.6231 0.4258 0.7301 0.032* H4B 0.5422 0.4362 0.5810 0.032* C5 0.5272 (2) 0.34231 (14) 0.7100 (4) 0.0258 (7) H5A 0.5168 0.3292 0.8329 0.031* H5B 0.031* 0.4646 0.3343 0.6472 C6 0.6906 (2) 0.28145 (17) 0.7370(4) 0.0350 (9) 0.042* H6A 0.6734 0.2558 0.8441 H6B 0.7275 0.3239 0.7684 0.042* C7 0.7496 (2) 0.23626 (18) 0.6123 (3) 0.0343 (8) H7A 0.8207 0.2481 0.6149 0.041* H7B 0.7413 0.1864 0.6389 0.041* C8 0.0239(7) 0.6161 (2) 0.28675 (14) 0.4647 (4) C9 0.7430(2)0.22828 (16) 0.2855 (4) 0.0280(7) C10 0.80994 (19) 0.27006 (15) 0.1907 (4) 0.0274 (7) C11 0.8526(2) 0.24189 (17) 0.0437 (4) 0.0292 (8) H11 0.035* 0.8986 0.2686 -0.0208C12 0.8296 (2) 0.17542 (16) -0.0116 (4) 0.0315 (8) H12 0.8604 0.1567 -0.11210.038* C13 0.7618 (2) 0.13650 (16) 0.0801 (4) 0.0279 (8) H13 0.7451 0.0915 0.0397 0.033* C14 0.7174 (2) 0.16141 (16) 0.2295 (4) 0.0279 (8) C15 0.6440(2)0.11698 (17) 0.3277 (4) 0.0348 (8) H15 0.6224 0.1438 0.4320 0.042* C16 0.6897 (3) 0.04963 (19) 0.3921 (5) 0.0575(11) 0.086* H16A 0.7466 0.0601 0.4662

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H16B	0.7113	0.0219	0.2926	0.086*
H16C	0.6407	0.0236	0.4590	0.086*
C17	0.5526 (2)	0.10291 (17)	0.2180 (5)	0.0484 (10)
H17A	0.5040	0.0776	0.2874	0.073*
H17B	0.5710	0.0752	0.1165	0.073*
H17C	0.5242	0.1470	0.1795	0.073*
C18	0.8353 (2)	0.34351 (17)	0.2495 (4)	0.0352 (9)
H18	0.7933	0.3548	0.3523	0.042*
C19	0.8121 (3)	0.39612 (17)	0.1065 (4)	0.0440 (10)
H19A	0.8264	0.4430	0.1487	0.066*
H19B	0.7423	0.3928	0.0749	0.066*
H19C	0.8529	0.3863	0.0044	0.066*
C20	0.9436 (2)	0.34825 (18)	0.3058 (5)	0.0543 (10)
H20A	0.9570	0.3947	0.3516	0.081*
H20B	0.9864	0.3394	0.2056	0.081*
H20C	0.9567	0.3137	0.3961	0.081*
N1	0.60327 (17)	0.29785 (12)	0.6361 (3)	0.0254 (6)
N2	0.70470 (16)	0.25442 (13)	0.4446 (3)	0.0289 (6)
01	0.51541 (16)	0.44164 (10)	0.9980 (2)	0.0380 (6)
S1	0.53936 (5)	0.30782 (4)	0.30485 (10)	0.0304 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0428 (18)	0.0205 (18)	0.0326 (17)	-0.0024 (15)	0.0070 (17)	0.0058 (15)
C2	0.052 (3)	0.017 (3)	0.020 (2)	0.004 (2)	0.000	0.000
C3	0.0364 (16)	0.0186 (16)	0.0209 (15)	-0.0012 (14)	-0.0003 (14)	0.0030 (13)
C4	0.0330 (17)	0.0227 (17)	0.0247 (15)	-0.0001 (14)	0.0065 (16)	-0.0004 (15)
C5	0.0296 (16)	0.0216 (16)	0.0263 (15)	0.0010 (14)	0.0069 (16)	-0.0037 (14)
C6	0.0418 (19)	0.037 (2)	0.0257 (17)	0.0109 (16)	0.0008 (15)	-0.0028 (14)
C7	0.0357 (18)	0.044 (2)	0.0236 (15)	0.0088 (17)	-0.0064 (14)	-0.0027 (16)
C8	0.0283 (16)	0.0173 (18)	0.0260 (16)	0.0008 (14)	0.0041 (14)	-0.0005 (14)
C9	0.0278 (16)	0.033 (2)	0.0236 (15)	0.0123 (14)	-0.0023 (15)	-0.0033 (16)
C10	0.0271 (16)	0.0285 (19)	0.0265 (16)	0.0064 (14)	-0.0034 (16)	-0.0002 (16)
C11	0.0265 (16)	0.037 (2)	0.0243 (16)	0.0096 (16)	-0.0035 (14)	0.0014 (16)
C12	0.0340 (18)	0.038 (2)	0.0227 (17)	0.0127 (17)	-0.0051 (15)	-0.0009 (15)
C13	0.0335 (17)	0.025 (2)	0.0252 (16)	0.0037 (15)	-0.0045 (15)	-0.0022 (15)
C14	0.0255 (16)	0.032 (2)	0.0260 (18)	0.0083 (15)	-0.0011 (14)	0.0028 (15)
C15	0.0367 (18)	0.034 (2)	0.0335 (19)	0.0036 (16)	0.0034 (17)	-0.0002 (17)
C16	0.059 (2)	0.049 (3)	0.064 (3)	0.010 (2)	0.014 (2)	0.023 (2)
C17	0.042 (2)	0.048 (2)	0.056 (2)	-0.0065 (18)	0.0016 (19)	-0.006 (2)
C18	0.0380 (19)	0.035 (2)	0.033 (2)	0.0054 (16)	-0.0051 (15)	-0.0059 (16)
C19	0.055 (2)	0.029 (2)	0.047 (2)	0.0102 (18)	-0.0042 (18)	-0.0010 (18)
C20	0.055 (2)	0.041 (2)	0.067 (2)	0.0038 (19)	-0.022 (2)	-0.011 (2)
N1	0.0295 (13)	0.0227 (16)	0.0239 (13)	0.0041 (13)	-0.0001 (11)	-0.0032 (11)
N2	0.0305 (14)	0.0379 (18)	0.0185 (13)	0.0119 (13)	-0.0024 (12)	-0.0016 (12)
01	0.0749 (16)	0.0188 (12)	0.0203 (10)	0.0094 (12)	-0.0002 (11)	-0.0002 (9)
S1	0.0317 (4)	0.0306 (5)	0.0288 (4)	0.0073 (4)	-0.0040 (4)	-0.0021 (4)

Geometric parameters (Å, °)

C1—C2	1.507 (3)	C9—N2	1.424 (4)
C1—H1A	0.9800	C10—C11	1.383 (4)
C1—H1B	0.9800	C10—C18	1.527 (4)
C1—H1C	0.9800	C11—C12	1.387 (4)
C2—O1	1.435 (3)	C11—H11	0.9500
C2—O1 ⁱ	1.435 (3)	C12—C13	1.382 (4)
C2—C1 ⁱ	1.507 (3)	C12—H12	0.9500
C3—O1	1.430 (3)	C13—C14	1.384 (4)
C3—C4	1.513 (4)	С13—Н13	0.9500
C3—C3 ⁱ	1.518 (5)	C14—C15	1.515 (4)
С3—Н3	1.0000	C15—C16	1.523 (4)
C4—C5	1.527 (4)	C15—C17	1.524 (4)
C4—H4A	0.9900	C15—H15	1.0000
C4—H4B	0.9900	C16—H16A	0.9800
C5—N1	1.457 (3)	C16—H16B	0.9800
C5—H5A	0.9900	C16—H16C	0.9800
С5—Н5В	0.9900	C17—H17A	0.9800
C6—N1	1.451 (3)	С17—Н17В	0.9800
C6—C7	1.524 (4)	С17—Н17С	0.9800
С6—Н6А	0.9900	C18—C19	1.531 (4)
С6—Н6В	0.9900	C18—C20	1.534 (4)
C7—N2	1.470 (3)	C18—H18	1.0000
С7—Н7А	0.9900	С19—Н19А	0.9800
С7—Н7В	0.9900	С19—Н19В	0.9800
C8—N1	1.349 (3)	С19—Н19С	0.9800
C8—N2	1.362 (3)	C20—H20A	0.9800
C8—S1	1.663 (3)	C20—H20B	0.9800
C9—C14	1.405 (4)	C20—H20C	0.9800
C9—C10	1.416 (4)		
C2—C1—H1A	109.5	C12—C11—H11	119.3
C2—C1—H1B	109.5	C13—C12—C11	119.7 (3)
H1A—C1—H1B	109.5	C13—C12—H12	120.2
C2—C1—H1C	109.5	C11—C12—H12	120.2
H1A—C1—H1C	109.5	C12—C13—C14	121.7 (3)
H1B—C1—H1C	109.5	С12—С13—Н13	119.1
01—C2—O1 ⁱ	105.9 (3)	C14—C13—H13	119.1
O1—C2—C1 ⁱ	111.03 (14)	C13—C14—C9	117.8 (3)
$O1^{i}$ — $C2$ — $C1^{i}$	108.00 (15)	C13—C14—C15	120.2 (3)
O1—C2—C1	108.00 (15)	C9—C14—C15	122.0 (3)
O1 ⁱ —C2—C1	111.03 (14)	C14—C15—C16	112.3 (3)
C1 ⁱ —C2—C1	112.7 (3)	C14—C15—C17	110.9 (3)
O1—C3—C4	108.1 (2)	C16—C15—C17	111.0 (3)
01—C3—C3 ⁱ	102.59 (16)	С14—С15—Н15	107.4
C4—C3—C3 ⁱ	115.2 (2)	С16—С15—Н15	107.4

supplementary materials

01—C3—H3	110.2	C17_C15_H15	107.4
C4—C3—H3	110.2	C15-C16-H16A	107.4
C^{2i} C^{2} H ²	110.2	C15-C16-H16B	109.5
$C_{3} = C_{4} = C_{5}$	111.5 (2)	$H_{16A} - C_{16} - H_{16B}$	109.5
C_{3} C_{4} H_{4A}	100.2		109.5
$C_{5} = C_{4} = H_{4}$	109.5		109.5
C_{3} C_{4} H_{4}	109.5	HIGA-CI6_HIGC	109.5
C5—C4—H4B	109.3		109.5
С5—С4—Н4В	109.3		109.5
H4A—C4—H4B	108.0		109.5
NI-C5-C4	113.3 (2)		109.5
NI—C5—H5A	108.9	С15—С17—Н17С	109.5
C4—C5—H5A	108.9	Н17А—С17—Н17С	109.5
N1—C5—H5B	108.9	H17B—C17—H17C	109.5
С4—С5—Н5В	108.9	C10—C18—C19	110.9 (2)
H5A—C5—H5B	107.7	C10—C18—C20	110.8 (3)
N1—C6—C7	102.5 (2)	C19—C18—C20	111.1 (3)
N1—C6—H6A	111.3	C10-C18-H18	108.0
С7—С6—Н6А	111.3	C19-C18-H18	108.0
N1—C6—H6B	111.3	C20-C18-H18	108.0
С7—С6—Н6В	111.3	С18—С19—Н19А	109.5
H6A—C6—H6B	109.2	C18—C19—H19B	109.5
N2—C7—C6	101.5 (2)	H19A—C19—H19B	109.5
N2—C7—H7A	111.5	С18—С19—Н19С	109.5
С6—С7—Н7А	111.5	Н19А—С19—Н19С	109.5
N2—C7—H7B	111.5	H19B—C19—H19C	109.5
С6—С7—Н7В	111.5	C18—C20—H20A	109.5
Н7А—С7—Н7В	109.3	C18—C20—H20B	109.5
N1—C8—N2	107 3 (2)	H20A—C20—H20B	109.5
N1-C8-S1	127.2 (2)	$C_{18} - C_{20} - H_{20}C$	109.5
N2-C8-S1	1254(2)	$H_{20}A - C_{20} - H_{20}C$	109.5
$C_{14} - C_{9} - C_{10}$	123.1(2) 121.6(3)	$H_{20}B_{}C_{20}$ $H_{20}C_{}H_{20}C_{}$	109.5
C14 - C9 - N2	121.0(3)	C_{8} N1 C_{6}	112.6(2)
$C_{10} - C_{9} - N_{2}$	120.0(3)	C_{8} N1 C_{5}	112.0(2) 124.5(2)
$C_{10} = C_{2} = N_{2}$	110.4(3)	C_{0} N1 C_{5}	124.3(2)
$C_{11} = C_{10} = C_{9}$	117.0(3)	$C_{0} = N_{1} = C_{0}$	119.0(2)
	120.9 (3)	$C_{0} = N_{2} = C_{2}$	123.0(2)
	121.5 (3)	$C_8 = N_2 = C_7$	112.0(2)
	121.4 (3)	C9 = N2 = C7	121.4 (2)
CIO-CII-HII	119.3	C3—01—C2	108.6 (2)
01—C3—C4—C5	66.0 (3)	C9—C10—C18—C20	113.4 (3)
$C3^{1}$ — $C3$ — $C4$ — $C5$	180.0 (2)	N2—C8—N1—C6	8.0 (3)
C3—C4—C5—N1	-162.3 (2)	S1—C8—N1—C6	-172.1 (2)
N1—C6—C7—N2	19.2 (3)	N2-C8-N1-C5	168.0 (2)
C14—C9—C10—C11	-2.4 (4)	S1—C8—N1—C5	-12.2 (4)
N2-C9-C10-C11	175.0 (2)	C7—C6—N1—C8	-17.8 (3)
C14—C9—C10—C18	178.2 (3)	C7—C6—N1—C5	-178.9 (2)
N2-C9-C10-C18	-4.4 (4)	C4—C5—N1—C8	-79.0 (3)
C9—C10—C11—C12	1.1 (4)	C4—C5—N1—C6	79.6 (3)
C18-C10-C11-C12	-179.6 (3)	N1—C8—N2—C9	174.5 (3)

C10-C11-C12-C13	0.9 (4)	S1—C8—N2—C9	-5.3 (5)
C11—C12—C13—C14	-1.7 (4)	N1—C8—N2—C7	6.1 (3)
C12—C13—C14—C9	0.4 (4)	S1—C8—N2—C7	-173.7 (2)
C12—C13—C14—C15	-179.4 (3)	C14—C9—N2—C8	-85.7 (4)
C10-C9-C14-C13	1.7 (4)	C10-C9-N2-C8	96.9 (3)
N2-C9-C14-C13	-175.7 (3)	C14—C9—N2—C7	81.7 (4)
C10-C9-C14-C15	-178.5 (3)	C10—C9—N2—C7	-95.8 (3)
N2-C9-C14-C15	4.1 (4)	C6—C7—N2—C8	-16.5 (3)
C13-C14-C15-C16	60.6 (4)	C6—C7—N2—C9	174.6 (3)
C9—C14—C15—C16	-119.2 (3)	C4—C3—O1—C2	150.36 (19)
C13—C14—C15—C17	-64.3 (4)	C3 ⁱ —C3—O1—C2	28.2 (3)
C9—C14—C15—C17	115.9 (3)	O1 ⁱ —C2—O1—C3	-11.50 (14)
C11—C10—C18—C19	57.9 (4)	C1 ⁱ —C2—O1—C3	105.5 (3)
C9—C10—C18—C19	-122.7 (3)	C1—C2—O1—C3	-130.5 (2)
C11-C10-C18-C20	-65.9 (4)		
Symmetry codes: (i) $-x+1$, $-y+1$, z .			

Fig. 1

